Pages

Tuesday, May 27, 2014

Solution is a solution

Let us start with two equations
  1. ax + b = 0
  2. ax2 + bx + c = 0
Among the above two equations one is linear and the other is quadratic. The solution of the linear equation is x = -b/a and the solution of the quadratic is (1/2a)(-b±√(b2 - 4ac)). The point which I want to state is that the solution of a quadratic equation contains the solution of a linear equation. When we substitute c for zero in the quadratic equation then we get ax2 + bx = 0. On factorizing we get (ax + b) = 0 and x = 0. Whose solutions are x = -b/a and 0. -b/a is the solution of ax + b = 0. And x = 0 comes because x is multiplied throughout to get the equation ax2 + bx = 0.

Now according to me if solution of cubic exist then it must have the solution of quadratic contained in it. Similar is the case for the others. Let us compute the solution of a cubic equation when one root is known

The equation is ax3 + bx2 + cx + d =0. If the roots are α, β and γ and γ is known then
α + β + γ = -b/a
αβ + βγ + γα = c/a
αβγ = -d/a
Expressing sum of two roots in terms of third
α + β = -b/a - γ
Expressing product of two roots in terms of third
αβ = c/a - (βγ + γα)
αβ = c/a - γ(β + α)
αβ = c/a - γ(-γ - b/a)
αβ = c/a + γ2 + bγ/a
(α - β)2 = (α + β)2 - 4αβ
(α - β)2 = (-b/a - γ)2 - 4(c/a + γ2 + bγ/a)
(α - β)2 = (-b/a)2 + (γ)2 + 2bγ/a - 4c/a - 4γ2 - 4bγ/a
(α - β)2 = b2/a2 - 4c/a - 3(γ)2 - 2bγ/a
α - β = ±√[(b2 - 4ac)/a2 - 3(γ)2 - 2bγ/a]
adding α - β and α + β
2α or 2β = -b/a - γ ± √[(b2 - 4ac)/a2 - 3(γ)2 - 2bγ/a]
α or β = -b/2a - γ/2 ± (1/2a)√[(b2 - 4ac) - 3a2(γ)2 - 2baγ]

As we can see when one root γ = 0 and the equation is independent of d then the solution reduces to the solution of a quadratic equation.

Now it can be the solution of 5th degree equation exist and it contains the solution of 4th degree in it.

No comments:

Post a Comment